

Table des matières

1) (2)		
	Application aux suites	3
1) 2)	Image d'une suite convergente par une fonction continue	3 4
Ші	Le Théorème des Valeurs Intermédiaires	5
1) 2)		
IV	Convexité	6
1)	Fonctions convexes, fonctions concaves	6
2)	Point d'inflexion	6
3)	Caractérisations de la convexité	7
4)	Convexité et tangentes	7
5)	Point d'inflexion et dérivée seconde	8
6)	Conveyité et inégalités	S

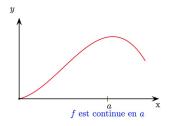
I Continuité d'une fonction

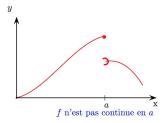
1) Définition

DÉFINITION

Soit f une fonction définie sur un intervalle I et a un réel appartenant à I.

- On dit que f est continue en a si et seulement si $\lim_{x \to a} f(x) = f(a)$.
- On dit que f est continue sur l'intervalle I si et seulement si f est continue en tout réel de I.





REMARQUES

- Les fonctions usuelles sont continues sur les intervalles où elles sont définies. (admis)
- Dans un tableau de variation, on admet que les flèches obliques traduisent la **continuité** et la **stricte monotonie** de la fonction sur l'intervalle considéré.

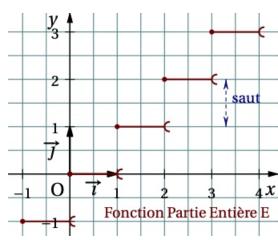
EXEMPLE

Un exemple connu d'une fonction discontinue : la fonction partie entière : Il s'agit de la fonction E définie sur \mathbb{R} tel que E(x) est le plus grand entier inférieur ou égal à x.

$$E(1,4) = 1$$
; $E(5,678) = 5$; $E(12) = 12$; $E(-3,6) = -4$; $E(-5) = -5$ etc.

Ainsi, pour tout réel x, on a : $x - 1 < E(x) \le x$.

La fonction E est donc discontinue en chaque point d'abscisse entière. En ces points, la courbe présente des « sauts ».



2) Propriété

PROPRIÈTÉ

Toute fonction dérivable sur un intervalle est continue sur cet intervalle.

DÉMONSTRATION

Soit f une fonction dérivable sur un intervalle I, et soit a un réel de I.

f est dérivable en a, donc $\lim_{x\to a} \frac{f(x)-f(a)}{x-a}$ est un réel. Notons ℓ ce réel. Soit g la fonction définie sur $I-\{a\}$ par $g(x)=\frac{f(x)-f(a)}{x-a}$. On a donc pour tout réel x de I, f(x)=(x-a)g(x)+f(a).

Étudions $\lim f(x)$:

 $\lim_{x\to a}(x-a)=0$ et $\lim_{x\to a}g(x)=\ell\in\mathbb{R}$ donc par produit de limites, $\lim_{x\to a}(x-a)g(x)=0$, et par somme,

 $\lim_{x \to a} f(x) = f(a)$, donc f est continue en a.

Or ceci est valable pour tout réel a de I, donc f est bien continue sur I.

REMARQUE

Important: la réciproque de cette propriété est fausse! (Exemple: la fonction $x \mapsto |x|$)

EXEMPLES

• Montrer que la fonction $f: x \mapsto \sqrt{x}$ est continue sur $[0; +\infty[$.

Corrigé: f est dérivable sur $]0;+\infty[$ donc continue sur cet intervalle.

Il reste à étudier la continuité de f en zéro :

Or $\lim_{x\to 0} \sqrt{x} = 0 = \sqrt{0}$ donc f est continue en 0.

Conclusion: f est continue sur $[0; +\infty[$.

• Montrer que la fonction $f: x \mapsto |x|$ est continue sur \mathbb{R} .

Corrigé: f est dérivable sur $]0; +\infty[$ et sur $]-\infty; 0[$ donc f est continue sur ces intervalles.

Il reste à étudier la continuité de f en zéro :

Or $\lim_{x \to 0} |x| = \lim_{x \to 0} -x = 0$, $\lim_{x \to 0} |x| = \lim_{x \to 0} x = 0$ et |0| = 0 donc f est continue en 0. $x \rightarrow 0$ x < 0

Donc f est continue sur \mathbb{R} .

II Application aux suites

1) Image d'une suite convergente par une fonction continue

PROPRIÉTÉ

admise

Si f est une fonction continue sur un intervalle I et (u_n) une suite d'éléments de I convergeant vers un réel ℓ de I.

Alors $\lim_{n\to+\infty} f(u_n) = f(\ell)$.

EXEMPLE

Soit (u_n) la suite définie pour tout entier naturel n par $u_n = 0, 4^n + 3$. Ainsi, $\lim_{n \to +\infty} u_n = 3$. Soit f la fonction définie sur \mathbb{R} par $f(x) = x^2$. f est continue sur \mathbb{R} , ainsi $\lim_{n \to +\infty} f(u_n) = f(3) = 9$.

REMARQUE

La réciproque est fausse. La suite $(f(u_n))$ peut converger tandis que la suite (u_n) diverge.

2) Théorème du point fixe

THÉORÈME

Soit f une fonction **continue sur un intervalle** I **dans lui-même** et soit (u_n) une suite définie par un réel u_0 de I et la relation de récurrence, pour tout entier naturel $n: u_{n+1} = f(u_n)$.

Si la suite (u_n) converge vers un réel ℓ de I, alors ce réel ℓ est solution de l'équation f(x) = x.

DÉMONSTRATION

On sait que $\lim_{n\to+\infty} u_n = \lim_{n\to+\infty} u_{n+1} = \ell$. Or d'après la propriété précédente, $\lim_{n\to+\infty} u_{n+1} = \lim_{n\to+\infty} f(u_n) = f(\ell)$. Donc $f(\ell) = \ell$.

REMARQUE

Attention, l'équation f(x) = x peut admettre plusieurs solutions. ℓ est l'une d'entre elles.

EXEMPLE

Soit (u_n) la suite définie sur \mathbb{N} par $u_0 = 4$ et pour tout entier naturel n, $u_{n+1} = 0, 5u_n + 4$. On admet que la suite (u_n) converge vers un réel ℓ . Déterminer alors la valeur de ℓ .

D'après le théorème précédent, puisque la fonction $x \mapsto 0, 5x + 4$ est continue sur \mathbb{R} et que la suite (u_n) , définie par $u_0 = 4 \in \mathbb{R}$ et par la relation de récurrence $u_{n+1} = f(u_n)$, converge vers ℓ , alors ℓ est solution de l'équation f(x) = x.

Or $f(x) = x \iff 0, 5x + 4 = x \iff 0, 5x = 4 \iff x = 8$.

Cette équation admettant une unique solution x = 8, alors on a $\ell = 8$. La suite (u_n) converge donc vers 8.

III Le Théorème des Valeurs Intermédiaires

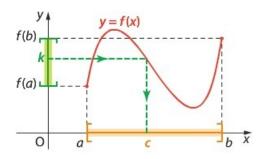
1) Le théorème

THÉORÈME

admis

Soit f une fonction continue sur un intervalle [a;b], avec a et b des réels.

Pour tout réel k compris entre f(a) et f(b), il existe au moins un réel c compris entre a et b tel que f(c) = k. Autrement dit, l'équation f(x) = k admet au moins une solution dans [a; b].



EXEMPLES

- Montrer que l'équation $x^5 + 2x 1 = 0$ a au moins une solution dans \mathbb{R} .
- Montrer que l'équation $\cos x = x$ a au moins une solution dans \mathbb{R} .

2) Le corollaire

COROLLAIRE

admis

Soit f une fonction **continue** et **strictement monotone** sur un intervalle [a;b], avec a et b des réels tels que a < b.

Pour tout réel k compris entre f(a) et f(b), il **existe un unique** réel c compris entre a et b tel que f(c) = k.

Autrement dit, l'équation f(x) = k admet une **unique** solution dans l'intervalle [a;b].

REMARQUE

On peut étendre le théorème des valeurs intermédiaires et son corollaire dans le cas où la fonction f est continue sur un intervalle du type [a;b[,]a;b] ou]a;b[,a] et b pouvant être $+\infty$ ou $-\infty$. Dans ce cas là, on remplace le calcul de f(a) (ou de f(b)) par un calcul de $\lim_{x\to a} f(x)$ (ou de $\lim_{x\to b} f(x)$).

EXEMPLE

Soit f la fonction définie sur \mathbb{R} par $f(x) = x^3 - 6x^2 - 2$.

- 1. Déterminer les limites de la fonction f en $-\infty$ et en $+\infty$.
- 2. Déterminer le sens de variations de f sur \mathbb{R} et dresser son tableau de variations sur \mathbb{R} .
- 3. Démontrer que l'équation f(x) = 0 admet une unique solution α dans \mathbb{R} , et donner un encadrement de α à 10^{-2} près.
- 4. En déduire le tableau de signe de f(x) sur \mathbb{R} .

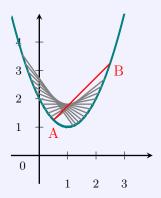
IV Convexité

1) Fonctions convexes, fonctions concaves

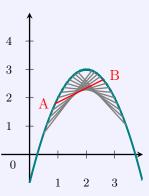
DÉFINITION

Soit f une fonction définie et dérivable sur un intervalle I et C sa courbe représentative dans un repère.

ullet On dit que f est **convexe** sur I si pour tous points distincts A et B de C, la courbe C est située **en-dessous** du segment [AB].



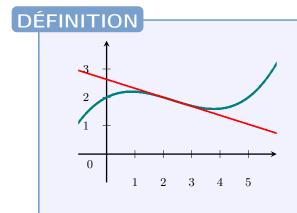
• On dit que f est **concave** sur I si pour tous points distincts A et B de C, la courbe C est située **au-dessus** du segment [AB].



EXEMPLES

Soient f, g et h les fonctions définies respectivement sur \mathbb{R} , \mathbb{R} et $[0; +\infty[$ par $f(x) = x^2, g(x) = e^x$ et $h(x) = \sqrt{x}$. Tracer leurs courbes et conjecturer la convexité des trois fonctions.

2) Point d'inflexion



Soit f une fonction dérivable sur un intervalle I et C sa courbe représentative dans un repère du plan. Soit a un réel de I.

Dire que le point A(a; f(a)) est un point d'inflexion de C signifie qu'au point A, la courbe C traverse la tangente en a.

Remarque:

En l'abscisse a d'un point d'inflexion, la fonction f change de convexité.

3) Caractérisations de la convexité

a Dérivée seconde d'une fonction

DÉFINITION

Soit f une fonction dérivable sur un intervalle I.

Dire que f est deux fois dérivable sur I signifie que f' est dérivable sur I.

La dérivée de f', notée f'', est appelée **dérivée seconde** de f.

EXEMPLE

 $f: x \mapsto x^2$ est dérivable sur \mathbb{R} et pour tout réel x, f'(x) = 2x.

La fonction f' est dérivable également sur \mathbb{R} . Donc f est deux fois dérivable sur \mathbb{R} et $\forall x \in \mathbb{R}$, f''(x) = 2.

b Propriété

PROPRIÉTÉ

admise

Soit f une fonction deux fois dérivable sur un intervalle I.

Les propositions suivantes sont équivalentes :

- f est **convexe** sur I
- f' est croissante sur I.
- f'' est **positive** sur I.

Les propositions suivantes sont équivalentes :

- f est concave sur I
- f' est décroissante sur I.
- f'' est **négative** sur I.

EXEMPLE

Déterminer la convexité de la fonction f définie sur \mathbb{R} par $f(x) = \frac{1}{6}x^4 - \frac{2}{3}x^3 - 3x^2 + 5$

4) Convexité et tangentes

PROPRIÉTÉ

Soit f une fonction dérivable sur un intervalle I et C sa courbe représentative dans un repère du plan.

- \bullet Si f est convexe sur I, alors C est située au-dessus de ses tangentes sur I.
- \bullet Si f est concave sur I, alors C est située en-dessous de ses tangentes sur I.

DÉMONSTRATION

Soit f une fonction convexe et dérivable sur un intervalle I, et soit a un réel de I.

Une équation de la tangente à la courbe de f au point d'abscisse a est donc y = f'(a)(x-a) + f(a).

Soit d la fonction définie sur I par d(x) = f(x) - (f'(a)(x-a) + f(a)). d est dérivable sur I et pour tout réel x de I, on a d'(x) = f'(x) - f'(a).

Or f est convexe sur I, donc f' est croissante sur I.

Donc pour tout $x \le a$, $f'(x) \le f'(a)$, d'où $d'x) \le 0$.

Et de même, pour tout $x \ge a$, $f'(x) \ge f'(a)$, d'où $d'(x) \ge 0$.

Donc d admet un minimum en a et ce minimum vaut d(a) = f(a) - (f'(a)(a-a) + f(a)) = f(a) - f(a) = 0.

Donc d est positive sur I, c'est-à-dire que pour tout réel de I, f(x) > f'(a)(x-a) + f(a).

Ainsi, la courbe de f est bien située au-dessus de sa tangente en a, et donc de toutes ses tangentes sur I.

On démontre de même que si f est concave sur I, alors C est en-dessous de ses tangentes sur I.

5) Point d'inflexion et dérivée seconde

PROPRIÉTÉ

admise

Soit f une fonction deux fois dérivable sur un intervalle I et C sa courbe représentative dans un repère. Soit a un réel de I.

A(a; f(a)) est un point d'inflexion de $C \iff f''$ s'annule en a en changeant de signe.

EXEMPLE

 $f: x \mapsto x^3$ est deux fois dérivable sur \mathbb{R} .

 $\forall x \in \mathbb{R}, f'(x) = 3x^2 \text{ et } f''(x) = 6x.$

On dresse (immédiat) le tableau de signe de f''(x):

x	-∞		0		+∞
f''(x)		_	0	+	

Ainsi, le point A(0;0) est un point d'inflexion de C.

6) Convexité et inégalités

POINT MÉTHODE

Pour établir une inégalité en utilisant la convexité d'une fonction f, on peut étudier la position relative de sa courbe C_f avec une de ses tangentes.

EXEMPLE

On cherche à démontrer l'inégalité suivante :

$$\forall x \in \mathbb{R} , e^x \geqslant x+1$$

Pour cela, on pose la fonction f définie sur \mathbb{R} par $f(x) = e^x$ et C_f sa courbe représentative dans un repère du plan.

- 1. Montrer que f est convexe sur \mathbb{R} .
- 2. Déterminer l'équation réduite de la tangente T à la courbe C_f au point d'abscisse 0.
- 3. En déduire que pour tout réel x, on a $e^x \ge x + 1$.

Correction:

- 1. f est deux fois dérivable sur \mathbb{R} et pour tout réel x, on a $f'(x) = e^x$ et $f''(x) = e^x$. Or pour tout réel x, $e^x > 0$, soit f''(x) > 0 donc f est convexe sur \mathbb{R} .
- 2. T: y = f'(0)(x-0) + f(0), avec $f'(0) = e^0 = 1$ et $f(0) = e^0 = 1$, soit $T: y = 1 \times (x-0) + 1$, soit T: y = x + 1.
- 3. La fonction f étant convexe sur \mathbb{R} , sa courbe C_f est située au-dessus de ses tangentes, et donc en particulier au-dessus de sa tangente T. Donc pour tout réel x, on a bien $e^x \ge x + 1$.