

Table des matières

1) 2)	Principes additif et multiplicatif Principe additif : réunion d'ensembles disjoints	2 2 3
	-uplets ou k-listes d'un ensemble	4
$\prod_{\mathbf{A}}$	rrangements et permutations	4
1)	Factorielle d'un entier naturel	
2)	Arrangements d'un ensemble	5
3)	Permutations d'un ensemble	5
IVc	combinaisons	6
1)	Parties d'un ensemble	6
2)	Combinaisons	7
3)	Propriétés des combinaisons	8
4)	Triangle de Pascal	C

I Principes additif et multiplicatif

1) Principe additif: réunion d'ensembles disjoints

DÉFINITION

Soit E un ensemble fini.

On appelle cardinal de E, l'entier naturel noté Card(E) égal au nombre d'éléments de E.

EXEMPLE

Soit $E = \{-4, 15 \ ; \ -2 \ ; \ 0 \ ; \ 1, 05 \ ; \ 3\}$. Alors Card(E) = 5.

REMARQUES

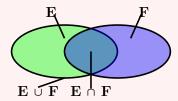
- Si E est l'ensemble vide, alors Card(E) = 0.
- \bullet Certains ensembles ne sont pas finis : l'ensemble $\mathbb N$ des entiers naturels, l'ensemble des réels de l'intervalle [0;1] etc.

PROPRIÉTÉ

admise

Soient E et F deux ensembles finis. On a alors :

$$\operatorname{Card}(E \cup F) = \operatorname{Card}(E) + \operatorname{Card}(F) - \operatorname{Card}(E \cap F)$$



DÉFINITION

Soient E et F deux ensembles finis.

On dit que E et F sont **disjoints** si et seulement si $E \cap F = \emptyset$.

PROPRIÉTÉ

admise

Soient E et F deux ensembles finis et disjoints. Alors :

$$Card(E \cup F) = Card(E) + Card(F)$$

REMARQUE

On peut généraliser la propriété précédente dans le cas de n ensembles finis et deux à deux disjoints

$$A_1, A_2, ..., A_n$$
: $\operatorname{Card}(A_1 \cup A_2 \cup ... \cup A_n) = \sum_{i=1}^n \operatorname{Card}(A_i)$

EXEMPLES

Soient $E = \{a; b; c\}$ et $F = \{d; e\}$.

- 1. E et F sont-ils disjoints? En déduire $E \cap F$.
- 2. Écrire $E \cup F$ et préciser $Card(E \cup F)$.

PROPRIÉTÉ

Soient A une partie d'un ensemble E fini, et \overline{A} le complémentaire de A dans E. Alors :

$$Card(\overline{A}) = Card(E) - Card(A)$$

DÉMONSTRATION

 \overline{A} est le complémentaire de A, donc $A \cup \overline{A} = E$ et $A \cap \overline{A} = \emptyset$, et ainsi $\operatorname{Card}(A \cup \overline{A}) = \operatorname{Card}(E)$.

Donc $\operatorname{Card}(A) + \operatorname{Card}(\overline{A}) - \operatorname{Card}(A \cap \overline{A}) = \operatorname{Card}(E)$.

Donc $\operatorname{Card}(A) + \operatorname{Card}(\overline{A}) = \operatorname{Card}(E)$, d'où finalement $\operatorname{Card}(\overline{A}) = \operatorname{Card}(E) - \operatorname{Card}(A)$.

2) Principe multiplicatif: produit cartésien

DÉFINITION

Soient E et F deux ensembles **non vides**.

On appelle produit cartésien de E par F l'ensemble noté $E \times F$ (« E croix F ») constitué des couples (x;y), où x est un élément de E et y un élément de F.

On le note $E \times F = \{(x; y), x \in E, y \in F\}$

REMARQUES

- On peut généraliser cette définition à plus de deux ensembles non vides.
- Le produit cartésien de E par E est noté E^2 .

EXEMPLES

- $\bullet \mathbb{R}^2$ pour les coordonnées d'un point du plan, \mathbb{R}^3 pour celles d'un point de l'espace.
- On lance deux dés : un dé à 6 faces numérotées de 1 à 6, et un dé à 4 faces colorées rouge, vert, bleu, jaune : $D_1 = \{1; 2; 3; 4; 5; 5\}$ et $D_2 = \{rouge; vert; bleu; jaune\}$.

Un lancer possible est alors un élément de $D_1 \times D_2$, par exemple (4; vert).

EXERCICE

Soient $E = \{a; b; c\}$ et $F = \{1; 2\}$. Déterminer l'ensemble $E \times F$, puis l'ensemble $F \times E$.

PROPRIÉTÉ

Soient E et F deux ensembles finis et non vides. Alors :

$$Card(E \times F) = Card(E) \times Card(F)$$

DÉMONSTRATION

Chaque élément de E permet de générer autant de couples de $E \times F$ que d'éléments de F. (Faire un arbre.) D'où le résultat.

II k-uplets ou k-listes d'un ensemble

DÉFINITION

Soit E un ensemble non vide et k un entier naturel non nul.

On appelle k-uplet ou k-liste de E un élément de E^k .

REMARQUES

- Un 2-uplet est un couple et un 3-uplet est un triplet.
- Un k-uplet de E est une liste **ordonnée** d'éléments de E. Par exemple, le triplet (1;2;3) n'est pas égal au triplet (2;1;3).

EXEMPLE

- (-2;3) est un couple d'éléments de \mathbb{R} .
- (f; u; t; u; r) est un 5-uplet d'éléments de l'ensemble des 26 lettres $E = \{a; b; ...; z\}$.

PROPRIÉTÉ

admise

Soit E un ensemble fini non vide et k un entier naturel non nul. Alors :

$$Card(E^k) = Card(E)^k$$

Autrement dit, le nombre de k-uplets d'un ensemble E est $Card(E)^k$.

EXEMPLE

Le digicode d'un immeuble est formé d'une lettre suivie de trois chiffres.

Combien y-a-t-il de codes possibles?

III Arrangements et permutations

1) Factorielle d'un entier naturel

DÉFINITION

Soit n un entier naturel non nul.

On appelle **factorielle** n, l'entier naturel noté n! (« factorielle n ») défini par :

$$n! = n \times (n-1) \times (n-2) \times ... \times 2 \times 1$$

REMARQUE

Par convention, on admet que 0! = 1.

EXEMPLES

- Calculer 4!
- Calculer astucieusement $\frac{7!}{5!}$

2) Arrangements d'un ensemble

DÉFINITION

Soient n un entier naturel non nul, E un ensemble fini non vide à n éléments et soit k un entier naturel tel que $0 \le k \le n$.

On appelle arrangement de k éléments de E tout k-uplet d'éléments distincts de E.

EXEMPLES

- Soit $E = \{a; b; c\}$. Alors les couples (a; b) et (c; a) sont deux arrangements possibles de 2 éléments de E. Le couple (a;a) n'est pas un arrangement car ses éléments ne sont pas distincts.
- Une course a lieu entre 20 compétiteurs. Le podium à l'issue de la course est un arrangement de 3 éléments de l'ensemble des 20 compétiteurs.

PROPRIÉTÉ

Soient n un entier naturel non nul et k un entier naturel tel que $0 \le k \le n$. Le nombre d'arrangements de k éléments parmi n éléments est :

$$A_n^k = n \times (n-1) \times ... \times (n-k+1) = \frac{n!}{(n-k)!}$$

DEMONSTRATION

ullet Il y a n choix pour le premier élément de l'arrangement, puis n-1 choix restants pour le deuxième élément de l'arrangement, et ainsi de suite, jusqu'à n-(k-1) choix restants pour le k-ieme.

•
$$\frac{n!}{(n-k)!} = \frac{n \times (n-1) \times ... \times (n-k+1) \times (n-k)!}{(n-k)!} = n \times (n-1) \times ... \times (n-k+1).$$

EXEMPLES

- Dans le premier exemple, il y a donc $\frac{3!}{(3-2)!} = \frac{3 \times 2}{1} = 6$ arrangements possibles. Dans le $2^{\text{ème}}$ exemple, il y a donc $\frac{20!}{(20-3)!} = \frac{20 \times 19 \times 18 \times 17!}{17!} = 20 \times 19 \times 18 = 6840$ podium possibles.

3) Permutations d'un ensemble

DÉFINITION

Soit n un entier naturel non nul et soit E un ensemble fini non vide à n éléments.

On appelle **permutation** de E tout n-uplet d'éléments **distincts** de E.

REMARQUE

Une **permutation** de E est donc un arrangement de n éléments de E.

EXEMPLES

- Si $E = \{a; b; c\}$, alors les triplets (a; b; c) et (b; a; c) sont deux permutations (distinctes) de E.
- On considère un jeu de 32 cartes. Alors tout mélange de ce jeu est une permutation de l'ensemble des cartes du jeu.

PROPRIÉTÉ

Soit n un entier naturel non nul. Le nombre de permutations d'un ensemble à n éléments est n!.

DÉMONSTRATION

Il y a n choix pour le premier élément de la permutation, puis n-1 choix restants pour le deuxième élément, et ainsi de suite, jusqu'à 1 choix restant pour le dernier élément.

EXEMPLES

- Dans le premier exemple, il y a donc $3! = 3 \times 2 \times 1 = 6$ permutations possibles de E.
- Dans le deuxième exemple, il y a donc $32! \approx 2,6 \times 10^{35}$ mélanges de jeu possibles.

IV Combinaisons

1) Parties d'un ensemble

DÉFINITION

Une **partie** d'un ensemble E est un sous-ensemble de E, c'est-à-dire un ensemble constitué d'éléments de E.

EXEMPLE

Si $E = \{1; 2; 3; 4; 5; 6\}$, alors les ensembles $\{2; 5\}$, $\{3\}$, E et \emptyset sont des parties de E.

REMARQUE

Attention: ne pas confondre une **partie** d'un ensemble avec un **k-uplet** de cet ensemble. Par exemple, $\{1;2\}$ est une partie à deux éléments de l'ensemble \mathbb{N} , et on a $\{1;2\} = \{2;1\}$. En revanche, $\{1;2\}$ est un 2-uplet (couple) de l'ensemble \mathbb{N} et $\{1;2\} \neq \{2;1\}$.

THÉORÈME

Soit n un entier naturel et E un ensemble fini à n éléments. Alors le nombre de parties de E est 2^n .

DÉMONSTRATION

Soit E' une partie de E.

Pour chaque élément de E, il y a deux choix possibles : il est dans E', ou il ne l'est pas. Comme E possède n éléments, cela fait 2^n possibilités pour créer E'. (Faire un arbre)

REMARQUE

Ce résultat, 2^n , est égal au nombre de n-uplets de l'ensemble $\{0;1\}$. Par exemple, si $E = \{1;2;3;4;5;6\}$, alors on peut faire correspondre la partie $\{2;5\}$ au 6-uplet $\{0;1;0;0;1;0\}$.

2) Combinaisons

DÉFINITION

Soit n un entier naturel.

Soit E un ensemble fini à n éléments et soit k un entier naturel tel que $0 \le k \le n$.

On appelle **combinaison** de k éléments de E toute partie de E à k éléments.

Le nombre de combinaison de k éléments parmi n est noté $\binom{n}{k}$ et se lit « k parmi n ».

PROPRIÉTÉ

Soient n et k deux entiers naturels tels que $0 \le k \le n$. Alors :

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

DÉMONSTRATION

Soit E un ensemble à n éléments.

 $\binom{n}{k}$ représente le nombre de parties de E constituées de k éléments parmi les n éléments de E.

Or on a vu que le nombre de k-uplets d'éléments tous distincts de E est $\frac{n!}{(n-k)!}$.

Pour obtenir un k-uplet d'éléments tous distincts de E, il suffit d'abord de choisir une combinaison de k éléments de E, puis de les ordonner.

Compter le nombre de façons d'ordonner k éléments revient à compter le nombre de permutations de k éléments : il y en a k!

Ainsi, on a

$$\frac{n!}{(n-k)!} = \binom{n}{k} \times k!$$

Donc

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

EXEMPLE

Au loto, on choisit 5 numéros entre 1 et 50. Combien y-a-t-il de tirages possibles?

Il s'agit de compter le nombre de combinaisons possibles de 5 éléments parmi 50, soit $\binom{50}{5}$:

$$\binom{50}{5} = \frac{50!}{(50-5)! \times 5!} = \frac{50 \times 49 \times 48 \times 47 \times 46 \times 45!}{45! \times 5!} = \frac{50 \times 49 \times 48 \times 47 \times 46}{5 \times 4 \times 3 \times 2 \times 1} = 2118760$$

Il y a donc 2 118 760 tirages possibles au loto.

EXERCICE

Pour gagner à l'Euromillions, il faut deviner les 5 bons numéros parmi 50 nombres, et les 2 étoiles gagnantes parmi 12 étoiles. Quelle est la probabilité de gagner le premier prix à l'Euromillions?

Réponse : 139 838 160 tirages possibles, soit une probabilité de gagner de $7,15 \times 10^{-9}$.

3) Propriétés des combinaisons

PROPRIÉTÉS

• Soient n et k deux entiers naturels tels que $0 \le k \le n$. Alors :

$$\binom{n}{k} = \binom{n}{n-k}$$

 \bullet Soit n un entier naturel. Alors :

$$\binom{n}{0} = 1$$

 \bullet Soit n un entier naturel non nul. Alors :

$$\binom{n}{1} = n$$
 et $\binom{n}{n} = 1$

• Soient n et k deux entiers naturels tels que $0 \le k \le n-1$. Alors la **relation de Pascal** est :

$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$$

DÉMONSTRATION

On utilise la formule $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ pour obtenir ces résultats :

$$\binom{n}{n-k} = \frac{n!}{(n-k)! \times (n-(n-k))!} = \frac{n!}{(n-k)! \times k!} = \binom{n}{k}$$

$$\binom{n}{0} = \frac{n!}{0! \times (n-0)!} = \frac{n!}{1 \times n!} = \frac{n!}{n!} = 1$$

$$\binom{n}{1} = \frac{n!}{1! \times (n-1)!} = \frac{n!}{(n-1)!} = \frac{n \times (n-1)!}{(n-1)!} = n$$

$$\binom{n}{k} + \binom{n}{k+1} = \frac{n!}{k!(n-k)!} + \frac{n!}{(k+1)!(n-(k+1))!}$$

$$= \frac{n! \times (k+1)}{(k+1)!(n-k)!} + \frac{n! \times (n-k)}{(k+1)! \times (n-k)!}$$

$$= \frac{n! \times (k+1+n-k)}{(k+1)!(n-k)!}$$

$$= \frac{(n+1)!}{(k+1)!(n+1-(k+1))!} = \binom{n+1}{k+1}$$

EXERCICE

Retrouver ces résultats sans effectuer de calculs mais à l'aide de dénombrements.

4) Triangle de Pascal

Le **triangle de Pascal** permet d'obtenir rapidement les valeurs de $\binom{n}{k}$ pour les premières valeurs de k et de n:

	k = 0	k = 1	k = 2	k = 3	k = 4	<i>k</i> = 5	k = 6
n = 0	1						
n = 1	1	1					
n = 2	1	2	1				
n = 3	1	3	3	1			
n = 4	1	4	6	4	1		
n = 5	1	5	10	10	5	1	
n = 6	1	6	15	20	15	6	1

REMARQUE

Pour tous réels a et b et pour tout entier naturel n non nul, on a :

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

La formule ainsi obtenue est appelée la formule du binôme de Newton et les entiers $\binom{n}{k}$ sont appelés les coefficients binomiaux.

Cette formule se démontre en Maths Expertes.

PROPRIÉTÉ

Soit $n \in \mathbb{N}^*$ et soit $k \in \mathbb{N}$ tel que $0 \le k \le n$. Alors :

$$\sum_{k=0}^{n} \binom{n}{k} = 2^n$$

REMARQUE

On peut conjecturer ce résultat à partir du triangle de Pascal en additionnant pour chaque ligne les nombres qui la composent.

DÉMONSTRATION

Soit E un ensemble fini à n éléments.

Par définition, $\binom{n}{k}$ est le nombre de combinaisons de k éléments de E, autrement dit le nombre de **parties** de E ayant k éléments.

Ainsi, d'après le principe additif, $\sum_{k=0}^{n} {n \choose k}$ est le nombre **total** de parties de E.

Or il y a 2^n parties de E (propriété précédemment démontrée), donc on a bien $\sum_{k=0}^{n} {n \choose k} = 2^n$.