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| La fonction logarithme népérien

1) Théoreme et définition

Pour tout réel x > 0, il existe un unique réel y tel que e¥ = .

DEMONSTRATION

e La fonction exponentielle est dérivable donc continue sur R.
e La fonction exponentielle est strictement croissante sur R.
e lim e*=0et lim e” =+oco.

T—>—00 T—>+00

Donc d’apreés le corollaire du TVI, pour tout x €]0; +oo[, il existe un unique réel y tel que e¥ = x.

DEFINITION

La fonction logarithme népérien, notée In, est la fonction définie sur R} qui & tout réel x > 0 associe

I'unique réel dont ’exponentielle est .
On dit que la fonction In est la fonction réciproque de la fonction exp sur R7.

2) Conséquences immédiates

PROPRIETES ladmises

eVa>0,VbeR, Ina=b < a=e’. En particulier, In1 =0 et Ine = 1.

e VreR, Ine” =1x.

o VreR: e =g,

e Les fonctions exp et In étant réciproques 'une de 'autre, leurs courbes sont symétriques par rapport
a la droite d’équation y = x.

A 4
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3) La relation fonctionnelle

a La relation

PROPRIETE

Soient x et y deux réels strictement positifs. Alors In(zy) =Inz +Iny.

DEMONSTRATION

Va,y €]0;+oo[, In(zy) = In(e™® x e™¥)  d’aprés la propriété précédente.
=1In (eln“lny) d’aprés la relation fonctionnelle de la fonction exp.
=In(x) + In(y) d’aprés la propriété précédente.

REMARQUE

Siz <0ety<O0,alorsIn(zy) existe, mais Inz et Iny n’existent pas : on a alors In(zy) = In(-z)+In(-y).

EXEMPLE
In12=In(3x2x2)=In3+2In2.

b Conséquences

PROPRIETE \

Soient a et b deux réels strictement positifs.

1. ln% =Ilna-1nb.

ln% = —Inb.

. Pour tous nombres strictement positifs a1, ag, ..., ap : In(a; xag x ... xay) =lna; +Inag +... +Ina,

VneZ,na"™ =nlna.

1
. In/a= Elna.

\. J

DEMONSTRATION
1. Ina :ln(% X b) :ln(%) +1nb, d’out ln(%) =Ilna-1Inb.

2. En prenant a =1, on a alors ln(%) =Inl-Inb=0-Inb=-Inbd.

3. Démonstration par récurrence (exercice a faire a la maison).

4. Pour n > 2, cela résulte de la proposition précédente en posant a1 = as = ... = a, = a.
Pour n =1 et n =0, cela résulte de a'! =a et a” = 1.

1
Pour n <0, Ina”™ = ln(afn) =-In(a™)=-(-nlna)) =nlna (car -n >0).

Ina.

1
5. a=+/ax+/adonc Ina=In/a+In\/a=2In\/a dott In\/a = 3
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EXEMPLE
Simplifier A =1In(473) +5In2 et B=1n/3 + %ln(g) (Correction : A=-In2et B= %ln5)

Il Etude de la fonction logarithme népérien

1) Dérivée

PROPRIETE

1
La fonction In est dérivable sur ]0;+oo[ et Vz >0, In'(z) = —.
x

DEMONSTRATION

On admet que la fonction In est dérivable sur ]0;+oo].
Soit f la fonction définie sur ]0;+oo[ par f(z) = em?.

[ est dérivable sur ]0;+oo[ , de dérivée f'(z) =In"z xe
Or Yz €]0;+00[, f(z) =z, donc f'(z) =1 sur ]0;+oo] .

Donc Vz €]0;+oo[, xln'z =1 dou In"z = —.
T

Iz _ o1n’ 2.

2) Sens de variation et signe

La fonction In est strictement croissante sur ]0;+oo].

PROPRIETE ]

DEMONSTRATION

1
Vx €]0; +oo[, In"x = = > 0 donc In est strictement croissante sur ]0; +oo[.
x

La fonction In est strictement négative sur |0;1[, nulle en 1, et strictement positive sur ]1;+oo[.

PROPRIETE ]

\.

DEMONSTRATION

In est strictement croissante sur ]0;+oo[ et In1 =0 d’ou le résultat.
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3) Résolution d’équations et d’'inéquations

PROPRIETE

conséquence directe de la stricte croissance de In :
Pour tous nombres a et b strictement positifs :

Ina=Inb < a=5 et Ina<lnb < a<b

\.

EXEMPLES

e Résoudre dans R, I'équation Inx = -5.

e Résoudre 'inéquation In(1 + ) < 100 aprés avoir précisé sur quel intervalle cette inéquation a un
sens.

e De méme avec l'inéquation In(z? - 4) <Inz.

e De méme avec 'équation In(z + 1) + In(z + 3) = In(z + 7).

4) Comportement asymptotique

PROPRIETE

limlnz = -0 et lim Inz = +o0.
x—0 xr—>+00

DEMONSTRATION

e Limite en +oo :

Soit I =]A;+oo[ avec A € R.

La fonction In est strictement croissante sur R} donc si x > e?, alors Inz > A : pour z assez grand,
Inx el, donc lim Inzx = +oo.

T—+00

e Limite en O :

. . o . . 1
lim — = +o00 et lim InX = +oo, donc par limite de fonctions composées, lim In — = +o0.
z—0 X—>+o0 z—0 X
x>0 x>0
1 .
Orln— =-Inz, donc limInz = —oco.
T z—>

5) Résumé

Tableau de variation détaillé : Courbe représentative :

x 0 1 e +00

(In)"(x) +

In 0
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6) Convexité

PROPRIETE

La fonction In est concave sur |0;+oo].

DEMONSTRATION

Soit f la fonction définie sur ]0;+oo[ par f(x) = In(x).
1 1
f est deux fois dérivable sur ]0; +oo[ et, pour tout réel z >0, f'(x) = —, et donc f"(z) = -—.
x’ x
Ainsi, pour tout réel z >0, f"(x) <0, donc f est concave sur |0;+oo].
Il Compléments
1) Des limites importantes
PROPRIETE
In(1 1
OIimuzl . hmﬂzo e limzlnx =0
x—0 € T—>+00 T x—0
>0
DEMONSTRATION
In(1 In(1 -In1l
e lim n(1+2) =i n(l+z)-ln (car In1=0).
=0 =0 (1+z)-1
On reconnait la limite quand z tend vers 0 du taux d’ accroissement de la fonction In entre 1 et 1 + x.
In(1
Or la fonction In est dérivable en 1 donc lir% n(1+2) =In'(1) =
o Vo>, 2L T
elnz
lim In(x) = +o0
r—>+00 eln(z) lnx
donc par composition, lim = 400 et donc par inverse, lim —— =0
x xT—>+00 lnx xr—>+00 eln(z)
. e
lim — =400
Tr—>+oo 1
soit lim —= = 0.

r—>+o00
eVz >0, zlnz =e?Inz.
limIn(z) = —o0
z—0

donc par composition, lir% Inze™® =0 soit limzInz = 0.
xr—>

xr—

lim ze®*=0

r—>—00
EXEMPLES
e Déterminer lim (Inx - x). (Factoriser par x)
T—>+00
2
1 1 1
e Déterminer lim ( ° lnx). (Vx> 0, L NS ﬂ)
o—>too \z2 + 1 z2+1 2+l 1w
2
x
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EXERCICE
Inz

Exercice pour retrouver le résultat de lim — =0:
r—+oo

1. Démontrer que pour tout x > 1, Inx < \/z (Etude de fonction).

Inz
2. En déduire un encadrement de — sur |1;+oo[ puis conclure.
x

On peut généraliser, en 'admettant, les deux derniéres limites, pour toute puissance de x :

PROPRIETE

e lim — =0 elimz"Inxz =0
r—>+oo T x—0
x>0

2) Dérivée de z ~ In(u(z))

PROPRIETE

Soit u une fonction dérivable et strictement positive sur un intervalle I.

@)

u(z)

Alors la fonction f définie par f(x) =1In (u(z)) est dérivable sur I et pour tout z € I, f'(z) =

DEMONSTRATION

La démonstration est immédiate a l'aide de la dérivée de = — f(u(z)) :
1 A
Vi eI, f(x) = () x o (u(2)) = ' () x — = )
u(z)  u(z)

3) Exercices de synthése

e Etudier la fonction f:z + In ( 3245 )

x-1

e Etudier la fonction f:z — (Inx)?2.
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