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I La fonction logarithme népérien

1) Théorème et définition

Pour tout réel x > 0, il existe un unique réel y tel que ey = x.
THÉORÈME

1

1

0

Cexp
ey = x

y

● La fonction exponentielle est dérivable donc continue sur R.
● La fonction exponentielle est strictement croissante sur R.
● lim

x→−∞ ex = 0 et lim
x→+∞ ex = +∞.

Donc d’après le corollaire du TVI, pour tout x ∈]0;+∞[, il existe un unique réel y tel que ey = x.

DÉMONSTRATION

La fonction logarithme népérien, notée ln, est la fonction définie sur R∗+ qui à tout réel x > 0 associe
l’unique réel dont l’exponentielle est x.
On dit que la fonction ln est la fonction réciproque de la fonction exp sur R∗+.

DÉFINITION

2) Conséquences immédiates

● ∀a > 0, ∀b ∈ R, lna = b ⇔ a = eb. En particulier, ln 1 = 0 et ln e = 1.
● ∀x ∈ R, ln ex = x.
● ∀x ∈ R∗+, elnx = x.
● Les fonctions exp et ln étant réciproques l’une de l’autre, leurs courbes sont symétriques par rapport
à la droite d’équation y = x.

PROPRIÉTÉS admises

1

1

0

y = ex

y = lnx

M(b ;a)eb = a

b

M ′(a ; b)

a

ln(a) = b
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3) La relation fonctionnelle

a La relation

Soient x et y deux réels strictement positifs. Alors ln(xy) = lnx + ln y.
PROPRIÉTÉ

∀x, y ∈]0 ;+∞[, ln(xy) = ln(elnx × elny) d’après la propriété précédente.
= ln (elnx+lny) d’après la relation fonctionnelle de la fonction exp.
= ln(x) + ln(y) d’après la propriété précédente.

DÉMONSTRATION

Si x < 0 et y < 0, alors ln(xy) existe, mais lnx et ln y n’existent pas : on a alors ln(xy) = ln(−x)+ln(−y).
REMARQUE

ln 12 = ln(3 × 2 × 2) = ln 3 + 2 ln 2.
EXEMPLE

b Conséquences

Soient a et b deux réels strictement positifs.

1. ln
a

b
= lna − ln b.

2. ln
1

b
= − ln b.

3. Pour tous nombres strictement positifs a1, a2, ..., an : ln(a1×a2× ...×an) = lna1+ lna2+ ...+ lnan
4. ∀n ∈ Z, lnan = n lna.

5. ln
√
a = 1

2
lna.

PROPRIÉTÉ

1. lna = ln(a
b
× b) = ln(a

b
) + ln b, d’où ln(a

b
) = lna − ln b.

2. En prenant a = 1, on a alors ln(1
b
) = ln 1 − ln b = 0 − ln b = − ln b.

3. Démonstration par récurrence (exercice à faire à la maison).

4. Pour n ⩾ 2, cela résulte de la proposition précédente en posant a1 = a2 = ... = an = a.
Pour n = 1 et n = 0, cela résulte de a1 = a et a0 = 1.
Pour n < 0, lnan = ln( 1

a−n
) = − ln(a−n) = −(−n lna)) = n lna (car −n > 0).

5. a =
√
a ×
√
a donc lna = ln

√
a + ln

√
a = 2 ln

√
a d’où ln

√
a = 1

2
lna.

DÉMONSTRATION
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Simplifier A = ln(4−3) + 5 ln 2 et B = ln
√
3 + 1

2
ln(5

3
). (Correction : A = − ln 2 et B = 1

2
ln 5)

EXEMPLE

II Étude de la fonction logarithme népérien

1) Dérivée

La fonction ln est dérivable sur ]0;+∞[ et ∀x > 0, ln′(x) = 1

x
.

PROPRIÉTÉ

On admet que la fonction ln est dérivable sur ]0 ;+∞[.
Soit f la fonction définie sur ]0 ;+∞[ par f(x) = elnx.
f est dérivable sur ]0 ;+∞[ , de dérivée f ′(x) = ln′ x × elnx = x ln′ x.
Or ∀x ∈ ]0 ;+∞[, f(x) = x, donc f ′(x) = 1 sur ]0 ;+∞[ .

Donc ∀x ∈ ]0 ;+∞[, x ln′ x = 1 d’où ln′ x = 1

x
.

DÉMONSTRATION

2) Sens de variation et signe

La fonction ln est strictement croissante sur ]0;+∞[.
PROPRIÉTÉ

∀x ∈]0;+∞[, ln′ x = 1

x
> 0 donc ln est strictement croissante sur ]0;+∞[.

DÉMONSTRATION

La fonction ln est strictement négative sur ]0; 1[, nulle en 1, et strictement positive sur ]1;+∞[.
PROPRIÉTÉ

ln est strictement croissante sur ]0;+∞[ et ln 1 = 0 d’où le résultat.

DÉMONSTRATION
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3) Résolution d’équations et d’inéquations

conséquence directe de la stricte croissance de ln :
Pour tous nombres a et b strictement positifs :

lna = ln b ⇔ a = b et lna < ln b ⇔ a < b

PROPRIÉTÉ admise

● Résoudre dans R+ l’équation lnx = −5.
● Résoudre l’inéquation ln(1 + x) ⩽ 100 après avoir précisé sur quel intervalle cette inéquation a un
sens.
● De même avec l’inéquation ln(x2 − 4) ⩽ lnx.
● De même avec l’équation ln(x + 1) + ln(x + 3) = ln(x + 7).

EXEMPLES

4) Comportement asymptotique

lim
x→0

lnx = −∞ et lim
x→+∞ lnx = +∞.

PROPRIÉTÉ

● Limite en +∞ :
Soit I =]A;+∞[ avec A ∈ R.
La fonction ln est strictement croissante sur R∗+ donc si x > eA, alors lnx > A : pour x assez grand,
lnx ∈ I, donc lim

x→+∞ lnx = +∞.

● Limite en 0 :
lim
x→0
x>0

1

x
= +∞ et lim

X→+∞
lnX = +∞, donc par limite de fonctions composées, lim

x→0
x>0

ln
1

x
= +∞.

Or ln
1

x
= − lnx, donc lim

x→0
lnx = −∞.

DÉMONSTRATION

5) Résumé

Tableau de variation détaillé : Courbe représentative :

x

(ln)′(x)

ln

0 +∞

+

−∞

+∞+∞

1

0

e

1

−1 1 2 3 4 5 6 7 8 9 10111213141516171819

−6
−5
−4
−3
−2
−1

1
2
3
4

0

ln

Polycopié de cours de N. PEYRAT Page 5 sur 7 Lycée Saint−Charles



Tale Spé Maths A-06 − FONCTION LN

6) Convexité

La fonction ln est concave sur ]0 ;+∞[.
PROPRIÉTÉ

Soit f la fonction définie sur ]0 ;+∞[ par f(x) = ln(x).
f est deux fois dérivable sur ]0 ;+∞[ et, pour tout réel x > 0, f ′(x) = 1

x
, et donc f ′′(x) = − 1

x2
.

Ainsi, pour tout réel x > 0, f ′′(x) < 0, donc f est concave sur ]0 ;+∞[.

DÉMONSTRATION

III Compléments

1) Des limites importantes

● lim
x→0

ln(1 + x)
x

= 1 ● lim
x→+∞

lnx

x
= 0 ● lim

x→0
x>0

x lnx = 0

PROPRIÉTÉ

● lim
x→0

ln(1 + x)
x

= lim
x→0

ln(1 + x) − ln 1
(1 + x) − 1

(car ln 1 = 0).

On reconnaît la limite quand x tend vers 0 du taux d’accroissement de la fonction ln entre 1 et 1 + x.

Or la fonction ln est dérivable en 1 donc lim
x→0

ln(1 + x)
x

= ln′(1) = 1

1
= 1.

● ∀x > 0, lnx

x
= lnx

elnx
.

lim
x→+∞ ln(x) = +∞

lim
x→+∞

ex

x
= +∞

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

donc par composition, lim
x→+∞

eln(x)

lnx
= +∞ et donc par inverse, lim

x→+∞
lnx

eln(x)
= 0

soit lim
x→+∞

lnx

x
= 0.

● ∀x > 0, x lnx = elnx lnx.

lim
x→0

ln(x) = −∞

lim
x→−∞x ex = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

donc par composition, lim
x→0

lnx elnx = 0 soit lim
x→0

x lnx = 0.

DÉMONSTRATION

● Déterminer lim
x→+∞(lnx − x). (Factoriser par x)

● Déterminer lim
x→+∞(

x

x2 + 1
lnx). (∀x > 0, x

x2 + 1
lnx = x2

x2 + 1
lnx

x
= 1

1 + 1

x2

lnx

x
).

EXEMPLES
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Exercice pour retrouver le résultat de lim
x→+∞

lnx

x
= 0 :

1. Démontrer que pour tout x > 1, lnx <
√
x (Étude de fonction).

2. En déduire un encadrement de
lnx

x
sur ]1 ;+∞[ puis conclure.

EXERCICE

On peut généraliser, en l’admettant, les deux dernières limites, pour toute puissance de x :

● lim
x→+∞

lnx

xn
= 0 ● lim

x→0
x>0

xn lnx = 0

PROPRIÉTÉ admise

2) Dérivée de x↦ ln(u(x))

Soit u une fonction dérivable et strictement positive sur un intervalle I.

Alors la fonction f définie par f(x) = ln (u(x)) est dérivable sur I et pour tout x ∈ I, f ′(x) = u′(x)
u(x)

.

PROPRIÉTÉ

La démonstration est immédiate à l’aide de la dérivée de x↦ f(u(x)) :

∀x ∈ I, f ′(x) = u′(x) × ln′(u(x)) = u′(x) × 1

u(x)
= u′(x)

u(x)
.

DÉMONSTRATION

3) Exercices de synthèse

● Étudier la fonction f ∶ x↦ ln(3x + 5
x − 1

).

● Étudier la fonction f ∶ x↦ (lnx)2.
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