Exercice 1 – Parité

Les fonctions suivantes, toutes définies sur \mathbb{R} , sont-elles paires sur \mathbb{R} ? impaires sur \mathbb{R} ? ni paire ni impaire?

$$f(x) = 3 + \cos(x)$$

$$g(x) = \frac{\sin(x)}{x^2 + 1}$$

$$h(x) = x^3 + x$$

$$k(x) = \sin(x) + \cos(x)$$

$$m(x) = 4x + 3$$

$$n(x) = \frac{-x}{1+x^2}$$

Exercice 2 – Périodicité

- 1) Démontrer que les fonctions suivantes, définies sur \mathbb{R} sont périodiques de période T:
 - a) $f(x) = -4\cos(x)$ et $T = 2\pi$.
 - **b)** $g(x) = 3 + 4\sin(3x)$ et $T = \frac{2\pi}{3}$.
- 2) On considère la fonction f définie sur \mathbb{R} par $f(x) = \sin(\pi x)$. Montrer que la fonction f est périodique et préciser la période.

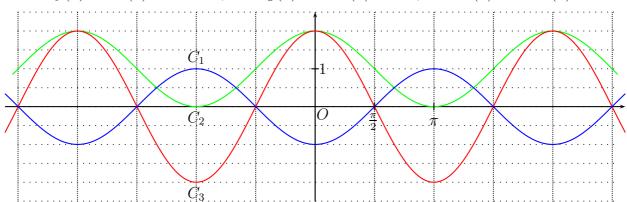
EXERCICE 3 — RECONNAITRE UNE FONCTION

On considère les fonctions f, g et h définies sur $\mathbb R$ par :

$$f(x) = \cos(x) + 1$$

$$g(x) = 2\cos(x)$$

$$h(x) = -\cos(x).$$



Associer à chaque fonction sa courbe représentative, en expliquant le choix fait.

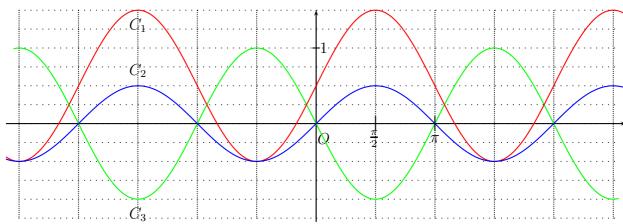
EXERCICE 4 – RECONNAITRE UNE FONCTION – BIS

On considère les fonctions f, g et h définies sur \mathbb{R} par :

$$f(x) = -\sin(x)$$

$$g(x) = 0, 5 + \sin(x)$$

$$h(x) = 0, 5\sin(x).$$



Associer à chaque fonction sa courbe représentative, en expliquant le choix fait.

EXERCICE 5 – ÉTUDE DE FONCTIONS

- 1) Étudier le sens de variations de la fonction f définie sur \mathbb{R} par $f(x) = 3x + \sin(x)$.
- 2) Étudier le sens de variations de la fonction g définie sur \mathbb{R} par $g(x) = 9x + 3\cos(2x 1)$.

EXERCICE 6 - EXERCICE BILAN

On considère la fonction f définie sur \mathbb{R} par $f(x) = x + \sin(x)$.

Dans un repère orthonormé, on note \mathcal{C} la courbe représentative de f et \mathcal{D} la droite d'équation y=x.

- 1) Étudier la parité de f. Que peut-on en déduire pour la courbe \mathcal{C} ?
- 2) Montrer que, pour tout réel x, on a $f(x + 2\pi) = f(x) + 2\pi$. Tracer la courbe \mathcal{C} sur la calculatrice. Comment peut-on interpréter le résultat?
- 3) a) Étudier le signe de la fonction h définie sur $[0; 2\pi]$ par h(x) = f(x) x.
 - **b)** Que peut-on en déduire pour les courbes \mathcal{C} et \mathcal{D} sur l'intervalle $[0; 2\pi]$?

EXERCICE 7 - RESPIRATION

La vitesse du flux d'air, en L/s, au cours de la respiration chez une personne au repos, peut être modélisée en fonction du temps, en secondes, par $f(t) = 0, 6 \sin\left(\frac{2\pi}{5}t\right)$.

La vitesse du flux d'air est positive lorsque la personne inspire et négative lorsqu'elle expire.

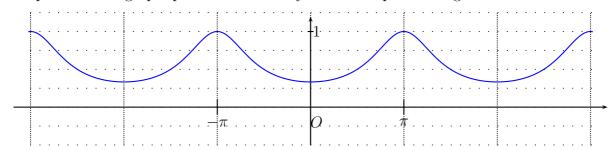
- 1) Vérifier que la période d'un cycle respiratoire de cette personne (inspiration et expiration) est de 5 secondes.
- 2) A quels instants du cycle respiratoire, de 0 à 5 secondes, la personne inspire et expire-t-elle 0, 3 L/s?

EXERCICE 8 — UN DERNIER POUR LA ROUTE

f est la fonction définie sur \mathbb{R} par

$$f(x) = \frac{1}{2 + \cos(x)}$$

- 1) Justifier que la fonction f est bien définie sur \mathbb{R} .
- 2) Voici la représentation graphique de la fonction f dans un repère orthogonal:



- a) Conjecturer à l'aide du graphique la parité et la période de f.
- b) Démontrer ces conjectures.
- c) Justifier alors que l'on peut étudier le sens de variations de la fonction f sur l'intervalle $[0;\pi]$.
- 3) a) On admet que f est dérivable sur $[0; \pi]$.

 Justifier que pour tout réel de $[0; \pi]$, $f'(x) = \frac{\sin(x)}{(2 + \cos(x))^2}$.
 - b) En déduire le sens de variations de f sur $[0;\pi]$ et dresser son tableau de variations sur $[-\pi;\pi]$.